![]() | ![]() | ![]() |
---|---|---|
![]() | ![]() | ![]() |
Our Lab focuses on understanding the structures and functions of proteins embedded in cellular membranes. Membrane proteins mediate all interactions of a cell or organism with the outside world and, as such, are responsible for the basic human experiences (taste, smell, touch, sight, thought, etc.) that constitute life. They are encoded by at least 30 percent of all genes and perform essential biological functions that include cellular transport, signaling, and programmed cell death. Dysfunctions of human membrane proteins are linked with devastating diseases and the membrane proteins encoded by viruses and bacteria play major roles in infection, virulence, and antibiotic resistance. It is, therefore, not surprising that membrane proteins are the principal targets of most drugs on the market today and that understanding their biological functions is a major goal of biomedical research.
The three-dimensional structure of a protein is essential for understanding its mechanisms of action, for medicinal chemistry efforts, and for the development of therapies. Dr. Marassi’s primary research tool is NMR spectroscopy, a powerful technique that utilizes strong magnetic fields to extract structural information from biological molecules and characterize their interactions with their cellular partners. Her laboratory uses complementary approaches of solution NMR and solid-state NMR for proteins that are embedded in lipid bilayers to obtain direct information about three-dimensional structure and membrane orientation.
Our Research is supported by the National Institutes of Health.